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Abstract Methods based on kernel density estimation have been successfully ap-
plied for various data mining techniques. Their natural interpretation together with
consistency properties make them an attractive tool in clustering problems. In this
paper, the complete gradient clustering algorithm, based on the density of the data,
is presented. The proposed method has been applied to a real data set of grains and
compared with K-means clustering algorithm. The wheat varieties, Kama, Rosa and
Canadian, characterized by measurements of main grain geometric features obtained
by X-ray technique, have been analyzed. Results indicate that the proposed method
is expected to be an effective method for recognizing wheat varieties. Moreover, it
outperforms the K-means analysis if the nature of the grouping structures among
the data is unknown before processing.

1 Introduction

Clustering is a major technique for data mining, used mostly as an unsupervised
learning method. The main aim of cluster analysis is to partition a given popula-
tion into groups or clusters with common characteristics, since similar objects are
grouped together, while dissimilar objects belong to different clusters. As a result,
a new set of categories of interest, characterizing the population, is discovered. The
clustering methods are divided into six groups: hierarchical, partitioning, density-
based, grid-based, and soft-computing methods [5]. These numerous concepts of
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clustering are implied by different techniques of determination of the similarity and
dissimilarity between two objects. A classical partitioning K-means algorithm is
concentrated on measuring and comparing the distances among objects. It is com-
putationally attractive and easy to interpret and implement in comparison to other
methods. On the other hand, the number of clusters is assumed by user in advance
and therefore the nature of the obtained groups may be unreliable for the nature of
the data, usually unknown before processing.

The rigidity of arbitrary assumptions concerning the number or shape of clus-
ters among data can be overcome by density-based methods that let the data detect
inherent data structures. In this paper, a complete gradient clustering algorithm is
presented. The main idea of this algorithm assumes that each cluster is identified by
humps of the kernel density estimator of the data. The number of clusters is deter-
mined by number of local maxima of the estimator. Each data point is moved in an
ascending gradient direction to accomplish the clustering. The procedure does not
need any assumptions concerning the data and may be applied to a wide range of
topics and areas of cluster analysis [2, 4]. The algorithm can be also used for outlier
detection. Moreover, an appropriate change in values of kernel estimator parameters
allows elimination of clusters in sparse areas [4].

The main purpose of this work is to present the application of the complete gradi-
ent clustering algorithm to a real data set of grains, characterized by their geometric
features. A comparison between the results obtained from the proposed algorithm
and the K-means algorithm is reported.

2 The Complete Gradient Clustering Algorithm

In this study, a complete gradient clustering algorithm, for short the CGCA, based
on kernel density estimation is presented. The principle of the proposed algorithm
is based on the density of the data, since the implementation of the CGCA needs
to estimate the probability density function. Each cluster is characterized by local
mode or maxima of the kernel density estimator. Regions of high densities of objects
are recognized as clusters, while areas with rare distributions of objects divide one
group from another. The local maxima are searched by using an ascending gradient
method. The algorithm works in an iterative manner until a termination criterion has
been satisfied.

2.1 Kernel Density Estimation

Suppose that x1, x2, . . . , xm is a random sample of m independent points in n-
dimensional space from an unknown distribution with probability density function
f . The kernel estimator of f can be defined as:
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f̂ (x) =
1

mhn

m

∑
i=1

K
(

x− xi

h

)
, (1)

where the positive coefficient h is called the smoothing parameter, while the mea-
surable function K : Rn → [0,∞) of unit integral

∫
Rn K(x)dx = 1, unimodal and sym-

metrical with respect to zero, takes the name of a kernel [6].
It is generally accepted, that the choice of the kernel K is not as important as

the choice of the coefficient h and thank to this, it is possible to take into account
the primarily properties of the estimator obtained. Most often the standard normal
kernel given by a formula:

K(x) =
1

2π
n/2 e−

xTx
2 (2)

is used.
The practical implementation of the kernel density estimators requires a proper

choice of the bandwidth h. The best value of h is taken as the value that minimizes
the mean integrated square error

MISE( f̂ ) = E
∫

( f̂ (x)− f (x))2dx. (3)

A frequently used bandwidth selection technique is based on the approach of
least-squares cross validation [6]. The value of h is chosen to minimize the function
M : (0,∞)→ R given by the rule:

M(h) =
1

m2hn

m

∑
i=1

m

∑
j=1

K̃
(

x j− xi

h

)
+

2
mhn K(0), (4)

where K̃(x) = K∗2(x)−2K(x) and K∗2 is the convolution square of the function K;
for the standard normal kernel (2):

K∗2(x) =
1

(4π)n/2 e−
xTx

4 . (5)

.
Additional procedures improving the quality of the estimator obtained are found

in [6]. Practical applications are presented in the publication [3]. For further pur-
poses, the kernel density estimator with the standard normal kernel (2) is used.

2.2 Procedures of the CGCA

Consider the data set containing m samples x1, x2, . . . , xm in n-dimensional space.
Using the methodology introduced in section 2.1, the kernel density estimator f̂
may be constructed. The idea of the CGCA is based on the approach proposed by
Fukunaga and Hostetler [1]. Thus given the start points:
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x0
j = x j for j = 1,2, . . . ,m, (6)

each point is moved in an uphill gradient direction using the following iterative
formula:

xk+1
j = xk

j +b
∇ f̂ (xk

j)

f̂ (xk
j)

for j = 1,2, . . . ,m, and k = 0,1, . . . , (7)

where ∇ f̂ denotes the gradient of kernel estimator and parameter b = h2/(n + 2)
[1, 4].

To complete the algorithm the following two aspects need to be specified: a ter-
mination criterion of the algorithm and procedure of creating clusters.

The algorithm will be stopped when the following condition is fulfilled:

|Dk−Dk−1| ≤ αD0, (8)

where D0 and Dk−1, Dk denote sums of distances between particular elements of set
x1, x2, . . . , xm before starting the algorithm as well as after the (k− 1)-th and k-th
step, respectively. The positive parameter α is taken arbitrary and the value 0.001 is
recommended. This k-th step is the last one and will be denoted by k∗.

Finally, after the k∗-th step of algorithm (6)-(7) the set:

xk∗
1 ,xk∗

2 , . . . ,xk∗
m , (9)

considered as the new representation of all samples x1, x2, . . . , xm, is obtained. Fol-
lowing this, the set of mutual distances of the above elements:{

d(xk∗
i ,xk∗

j )
}

i=1,2,...,m−1
j=i+1,i+2,...,m

(10)

is defined. Using the methodology presented in section 2.1, the auxiliary kernel
estimator f̂d of the elements of set (10), treated as a sample of a one-dimensional
random variable, is created. Next, the first (i.e. for the smallest value of an argument)
local minimum of the function f̂d belonging to the interval (0,D), where D means
the maximum value of the set (10), is found. This local minimum will be denoted
as xd , and it can be interpreted as half the distance between “centers” of potential
clusters lying closest together. Finally, the clusters will be created. First, the element
of set (9) will be taken; it initially create a one-element cluster containing it. An
element of set (9) is added to the cluster if the distance between it and any element
belonging to the cluster is less than xd . Of course, this element is removed from the
set (9). If there are no more elements belonging to the cluster, the new cluster is
created. The procedure of assigning elements to clusters is repeated as long as the
set (9) is not empty.

Additional information on the CGCA procedures, especially analysis of influence
of the values of kernel estimator parameters on results obtained, is described in
details in [4].
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3 Materials and methods

The proposed algorithm has been tested on a real data set of grains. Studies were
conducted using combine harvested wheat grain originating from experimental
fields, explored at the Institute of Agrophysics of the Polish Academy of Sciences
in Lublin. The examined group comprised kernels belonging to three different va-
rieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected
for the experiment. Visualization of the internal kernel structure was detected us-
ing a soft X-ray technique. The images were recorded on 13x18 cm X-ray KODAK
plates. Figure 1 presents the X-ray images of these kernels.

Fig. 1 X-ray photograms
(18x13cm) of kernels

The X-ray photograms were scanned using the Epson Perfection V700 table
photo-scanner with a built-in transparency adapter, 600 dpi resolution and 8 bit gray
scale levels. Analysis procedures of obtained bitmap graphics files were based on
the computer software package GRAINS, specially developed for X-ray diagnostic
of wheat kernels [7]. To construct the data, seven geometric parameters of grains:
area A [mm2], perimeter P [m], compactness C = 4πA/P2, length of kernel [mm],
width of kernel [mm], asymmetry coefficient and length of kernel groove [mm] were
measured from a total of 210 samples (see Figure 2).

In our study, the data was reduced to be two-dimensional after applying the prin-
cipal component analysis to validate the results visually.

All calculations were carried out on an IBM/PC compatible computer with the
Windows XP operation system, and all programs were developed in Borland C++
Builder Environment.
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Fig. 2 Document window with geometric parameters of a kernel and statistical parameters of its
image

4 Results and discussion

The dataset consists of 210 kernels belonging to three wheat varieties, 70 elements
each, characterized by 7 geometric features, all of these real-valued continuous. The
data’s projection on the axes of the two greatest principal components is presented
in Figure 3 with wheat varieties being distincted symbolically.

Fig. 3 Wheat varieties data set on the axes of the two greatest principal components: (◦) the Rosa
wheat variety, (×) the Kama wheat variety, (ut) the Canadian wheat variety
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All samples are labeled by numbers: 1-70 for the Kama wheat variety, 71-140
for the Rosa wheat variety, and 141-210 for the Canadian wheat variety. The CGCA
created three clusters corresponding to Rosa, Kama, and Canadian varieties, con-
taining 69, 65, and 76 grains respectively. Thus the samples 9, 38, which belong to
the Kama wheat variety are incorrectly grouped into the cluster associated with the
Rosa wheat variety. What is more, the samples 125, 136, 139, which belong to the
Rosa wheat variety, and the samples 166, 200, 202, which belong to the Canadian
wheat variety are wrongly classified into the cluster associated with the Kama wheat
variety. In addition, the samples 20, 27, 28, 30, 40, 60, 61, 64, 70, which belong to
the Kama wheat variety are wrongly classified into the cluster associated with the
Canadian wheat variety.

Clustering results, containing numbers of grains classified properly and numbers
of grains classified wrongly into clusters associated with Rosa, Kama, and Canadian
varieties, are shown in Table 1.

Table 1 Clustering results of the Complete Gradient Clustering Algorithm and K-Means Algo-
rithm for the wheat varieties data set

Complete Gradient Clustering Algorithm K-Means Clustering Algorithm

Clusters Correct Incorrect Total Correct Incorrect Total

Rosa 67 2 69 66 2 68
Kama 59 6 65 65 12 77
Canadian 67 9 76 62 3 65

According to the results of the CGCA, out of 70 kernels of the Rosa wheat vari-
ety, 67 was classified properly. Only 2 of the Kama variety were classified wrongly
as the Rosa variety. These frequencies are equal 66 and 2 respectively if K-means
algorithm is used. The Rosa variety is best recognized using both techniques.

For the other two varieties, the CGCA created clusters containing 65 elements
(Kama) and 76 elements (Canadian). In regard to the Kama variety, 59 kernels were
classified correctly, while 6 of the other varieties were incorrectable identified as
the Kama variety. For the Canadian variety, 67 kernels were correctly identified
and 9 kernels of the Kama variety were wrongly identified as the Canadian variety.
Results obtained using K-means algorithm were the following: the Kama variety:
out of 77 kernels, 65 were correctly identified and 12 incorrectly identified; the
Canadian variety: our of 65 kernels, 62 were correctly identified and 3 incorrectly
identified. This implies, that Kama and Canadian varieties are similar with respect
to geometric parameters.

The percentages of correctness of both methods are summarized in Table 2. The
proposed algorithm achieved accuracy of about 96% for the Rosa wheat variety,
84% for the Kama wheat variety, and 96% for the Canadian wheat variety. In com-
parison, K-means algorithm achieved accuracy of about 94%, 93%, and 89% re-
spectively.
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Table 2 Comparison of performance of the Complete Gradient Clustering Algorithm and K-Means
Algorithm for the wheat varieties data set, correctness percentages are reported

Complete Gradient Clustering Algorithm K-Means Clustering Algorithm

Wheat Varieties Correctness % Correctness %

Rosa 96 94
Kama 84 93
Canadian 96 89

5 Conclusions

The proposed clustering algorithm, based on kernel estimator methodology, is ex-
pected to be an effective technique for forming proper categories of wheat. It be-
haves equally or better than the classical K-means algorithm. Moreover, the data
reduced after applying the principal component analysis, contained apparent clus-
tering structures according to their classes. Both algorithms performed well and the
percentages of correctness were comparable. The amount of 193 grains, giving al-
most 92% of the total, was classified properly. The wheat varieties used in the study
showed differences in geometric parameters. The Rosa variety is better recognized,
whilst Kama variety and Canadian variety are less successfully differentiated. Fur-
ther research is needed on grain geometric parameters and these ability to identify
wheat kernels.
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